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POTENTIAL FLOW ABOUT ELONGATED BODIES OF REVOLUTION

By CaryL Karran

SUMMARY

This report presents a method of solving the problem
of axial and transverge potential flows around arbitrary
elongated bodies of revolution. The solutions of La-
place’s equation for the velocity potentials of the axial
and transverse jflows, the system of coordinates being an
elliptic one in a meridian plane, are known to be of the
following form:

¢=E ANV Pa() (axial flow)

n=1

¢=EAMQ,} (\) Ppl(u) cos f8(transverse flow)

n=1

If a power-series development of \ in p i3 assumed
as the equation of the meridian profile in elliptic co-
ordinates, the boundary conditions of the two types of
Slow yield linear equations for the determination of the
coefficients A, and A,. It 18 further shown that a
knowledge of these coefficients leads directly to the sink-
source and doublet distributions corresponding to the
azial and transverse flows, respectively.

The theory is applied to a body of revolution obtained
from a symmetrical Joukowsky profile, a shape re-
sembling an airship hull. The pressure distribution
and the transverse-force distribution are calculated and
serve as examples of the procedure to be followed in the
case of an actual airship. A section on the determina-
tion of inertia coefficients 18 also included in which
the validity of some earlier work is questioned.

INTRODUCTION

There are two methods of handling the problem of
potential flow about a body of revolution. One, the
indirect method first used by Taylor (reference 1)
and by G. Fuhrmann (reference 2) who computed the
pressure distribution by the method of sources and
sinks suggested by Rankine. Fuhrmann assumed
certain sink-source distributions and calculated the
pressure distribution for the streamline body resulting
from the assumed sink-source system. He also con-
structed models of the calculated shapes and measured

the pressure distributions over them when placed in a
wind tunnel. -

The other method, developed by von Kérmén
(reference 3), considered the direct problem; i. e., the
calculation of the .pressure distribution over a given
streamline shape. He approximated the requisite
sink-source distribution by a computed continuous
system of sinks and sources arranged in stepwise con-
stant intensity. The various strengths were deter-
mined from the condition that the airship hull is a
streamline surface in the parallel flow and the flow
induced by the sinks and sources. By satisfying this
condition at an arbitrary number of points equal to the
number of unknown sink and source segments, von
Kérmén obtained a system of linear equations for the
determination of the unknown strengths of the sink-
source distribution. He also treated the case of
transverse flow (references 3 and 4) by the distribution
of doublets along the axis of symmetry of the body of
revolution and calculated the strengths of the various
doublet segments in & manner similar to that used for
the sink-source intensities. .

The present paper is an attempt to treat the direct
problem according to the methods of the potential
theory. Thus, Laplace’s equation for the velocity
potential is set up in a system of elliptic-cylindrical
coordinates A, g, § and solved in conjunction with the
appropriate boundary conditions for axial and trans-
verse flows. It is then assumed that a power-series
development of X in u represents the meridian profile
of the elongated body of revolution. The boundary
conditions for the two types of flow may then be ex-
pressed in the form of power series in p valid for the
entire range of u. This method leads to two sets of
linear equations, each set infinite in number of equa-
tions and each equation containing an infinite number
of unknown coefficients which serve to determine the
velocity potentials for the axial and transverse flows.
Incidental to the major task of determining these
coefficients, the sink-source and doublet distributions
corresponding to the axial and transverse flows are also
determined. Thus the results of this method are essen-
tially the same as those obtained by the method of
von KArman but are obtained in a more rigorous and
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direct manner. In von K&rmén’s method, approxima-
tions are made prior to the analysis; whereas, in the
method presented in this paper, approximations are
made after the analysis has been carried through in a
rigorous manner.

FUNDAMENTAL EQUATIONS

The fluid motion is assumed to be steady and irrota-
tional. There then exists a velocity potential ¢,
which is, in general, a function of the rectangular
Cartesian coordinates (z, 7, ). In cases of rotational
symmetry, however, it is appropriate to introduce the
cylindrical coordinates (z, p, §) where z denotes the
distance along the axis of symmetry, p(=+/2>+v?) the
perpendicular distance from this axis, and § the angle
between the (z, p) and (z, z) planes. (See fig. 1.)
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FIGURE 1.

Furthermore, since only elongated surfaces of revolu-
tion are to be considered it is natural to introduce &
prolate-elliptic coordinate system in the (z, p) plane.
The equations of transformation from the coordinates
(2, p) to the prolate-elliptic coordinates (¢, %) are:
z=2a cosh { cos 3
p=2a sinh { sin 11} @)
where 0={=« and 0=9<2~«
Thus ¢{=constant and p=constant represent confocal
ellipses and hyperbolas, respectively, the distance
between the foci being 4a.

For any point in space P(z, y, z) then
:z:=2a()3—1§*(1—p’)3 cos 8
y=2a(N*—1)}(1—p*? sin 0]
z=2alp

)

where A=cosh { and p=cos 7.

velocity potential ¢ satisfies Laplace’s equation
Asp=0 and since the (\, p, 8) system of coordinates is
an orthogonal one, takes the form:

g{(xf—l)a¢]+§i(1—ﬂg%

2
+(srmp e )5=0 @)

If, furthermore, the fluid is incompressible the
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FLOW PARALLEL TO THE AXIS OF SYMMETRY

In this case the flow is the same for all meridian
planes (z, p) and therefore the velocity potential ¢ is
afunction only of A and x. Equation (3) then reduces to

2 oe-28 ]+ 21—

o -ngE el o]0 @

If this equation is to be satisfied by a product
$=L(NM()

it follows that

VAL dM(ﬂ)

1 d 1
™ 37\[(”_1’ o =T 3 [(1 —4)
which separates into two ordlna.ry differential equatlons

d{(l W3 rer=0

a‘é[a— uf)‘fi—“f-]+cM=o ®

where c is an arbitrary constant.

Furthermore, if e=n(n-1), each of these equations is
of the Legendre type and therefore the general solution
of equation (4) is

¢=EA,P,,<» P.) 0)

n=0

This expression for ¢ has & singularity at infinity
since P,() is & polynomial of the nth degree in A and
is therefore infinite for A=w. Since the region outside
a surface is to be considered and since it must include
the region at infinity, another solution for L(X) is
required. This solution, linearly independent of
P,(2), is the zonal harmonic of the second kind and is
denoted by @.(\) where

(N = P(X)f W )

It vanishes for A=« but has & singular point for
A=+1 where it is infinite like log (A£1).

Thus, for example, since Py(A)=1, Pi(N\)=), it is
found that

e dh 1, AF1_ 1.1 1
M=, woi=zlex—1=x " et
where |A[>1 and
1 A1
AN)= )‘f )\2()\2 1) 2)‘10g)‘_1_1
=?+5_>\‘+7_A°+ .

It may also be shown that
Q=3 P.(¥) log 21K, (n

where K,()) is a polynomial of the (n—1)th degreo.
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Another useful expression for @,(\) is that due to
F. Neumann (reference 5); namely

Q=3 [ stk ®

Expanding T—l_-_)q in decreasing powers of A,

1 = 1™
Q,,(x>=§Z [ NP0
=

Expressing A\ in terms of zonal harmonics (refer-

ence 5)
i 1-1

(2i—4k4-1)i!
M=) ikl pR T
i
where the upper 11m1t 2 used depends on whether ¢is
—2—

odd}andwhere [2n]=2-4-6...2n;[2n—1]=1-3.5...

en—1); [0]=[1]=[—1]=1. Also (2n—1) /=[2n—1]
[2n—2].

[even

Substituting this expression for A\ in the foregoing
equation for @,(2) it follows that
i i

..,_

IEAN @i—4kL1)i! [
Q(N) —gzovﬁgm f-1 P,(MP (M)A

The zonal harmonics P,(};) are orthogonal functions
and satisfy the following relations:

! 0 if r%s
PrP,d)\1= 2 ifr=s
-1 2T+1

Expanding the preceding expression for @,(\) with
regard to 7 and writing the terms with equal indices of
k in columns and adding these columns, there is ob-
tained, using the orthogonal property of the P,(A\)’s,
the following equation:

N (n+2k)! 1
Qﬂ(k)= 27L+2 +1][2k]WWhere n=0, 1, ?,' .o (9)
k=0

This expression is convergent for |[\[>>1 and divergent
for N=1.

Instead of being given by equation (6) the velocity
potential is now given by the following expression:

=2AnQa(>‘) Po(u)

which gives the general solution of equation (4) for
regions outside a surface of revolution and extending
to infinity.

71846—36——14

(10)
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In cases of rotational symmetry where the lines of
flow are in meridian planes, it is convenient to intro-
duce Stokes’ stream function ¢. This function arises
from the statement that the fluid is incompressible
(equation of continuity) and is related to the velocity
potential ¢ according to the following equations:

Y _ ¢ ay 99
3,="3; 0 5,=—r7, (11)

The lines = constant represent the streamlines. It
mgay be remarked that, unlike the two-dimensional case
where both the stream function and the velocity po-
tential satisly Laplace’s equation, Stokes’ stream func-
tion does not satisfy it.

The introduction of the variables A\, u into equations
(11) by means of equations (1) leads to the following
relations:

a¢ 2a(1—u’)a¢ anda—--—-—‘m()\’—l)-a— 12)

If a substitution is made for ¢ from equation (10) and

P, () is replaced by its value obtained from Legendre’s
differential equation, that is:
daP,

i @-{-constant (13)

Po(u)=

it is found that

¥= 2‘1(1_#2)0‘2 l)zn(n—ltl)

Furthermore, if the body of revolution is moving
with & velocity U in the direction of the axis of sym-
metry 2z, it may be conveniently supposed to be at
rest and the fluid to have a translation — U super-
posed on its actual motion. This consideration adds
a term 2a U\p to the velocity potential and 2a*U(1— u?)

dP,dQ,

(A2—1) to the stream function. Therefore

¥=20"(1-p)(N*-1) EaUn(n-l—l) du ot l:l (14)
At the surface of the fixed body of revolution the
normal velocity of the fluid must be zero and therefore
the boundary must coincide with a streamline

Y = constant, say 0. Hence the boundary condition at
the surface is given by

1
T afnt1) dn[(

N A, dPadQu | oo
En(n+1) e ax toU=

In order to find the velocity components uy, u,, In
the directions of the coordinate lines A, p, respectively,
it is to be noted that since the system of coordinates is
an orthogonal one,

(15)

04
8n

ds*=det+dp*=ds +ds,?

0
Up=— a—;% and u,=-—

where
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By means of the equations of transformation (1), it is
found that :

2 A\}
d83=‘-2(l(;:T1 d)\.

2__# $
and ds=20(3=2 ) da
Therefore:

1 E—_1>*a¢

h=Toa\ =) ax

-1 /1—p"\¥0¢

and =~5a\"=4%) 3
Hence:

a 2 2
=g 0 D(5) +a-a(gh) | ao
SINK-SOURCE DISTRIBUTION

The distribution of sinks and sources is assumed to
lie along the segment of the axis of symmetry z,
—2a=<2=2a, and to be of intensity I(z) per unit
length. At any point (z, p) in any meridian plane the
velocity potential due to this distribution is given
(reference 6, p. 60) by

_1 2 Iz 17)
e e

For points lying on the z axis but outside the distribu-
tion, the velocity potential is given by the simplified
expression

¢ 1 I (21) dzl

47 -2 2—2

Substituting for z and 2, 2aX and 2aM\,, respectively,
the preceding equation takes the form

¢__1_ 1 I(2aA)d\

—4:13' -1 h'— )\1

Finally, substituting for ¢ from equation (10) and
noting that P,(1)=1 for all values of n,

N 11 I@an)d\
Shaiok [ Lo

Ne=]

(18)

This is an integral equation for the unknown function
I(2ax;). It may be solved in the following manner:

From F. Neumann’s expression for @,(A) given by
equation (8) the following development is suggested
for the distribution function:

CORENS Xo%

n=]
where —1=\=s1
It then follows directly from equation (8) that

D (A )es9=0

n=1

for all values of A.

Hence =274,
and I(2a)\1)=27r2A.P,,()q) (19)

=]
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Thus, given the potential function ¢, that is the
A.’s, this expression determines the equivalent sink-
source distribution.

FLOW NORMAL TO THE AXIS OF SYMMETRY

The differential equation for the velocity potential in
the case of transverse flow is given by equation (3).
Recalling that this expression is Laplace’s equation in
the coordinates \, u, 8, it may be solved by supposing
¢ to be a product N\, u) B(6). Replacing ¢ in equa-
tion (3) by this product, the following pair of differen-
tial equations is obtained:

&R
S+ ER=0

-G |+5 a-m 5|

)\2_ 2

—Famame—pN=0

The general solution of the first equation is given by
R=A cosk9+4+Bsinkd

where A and B are arbitrary constants.
Putting N\, p)=L(\) M(u) in the second equation
leads to the following pair of ordinary differential
equations:

2 [ (oo
e G

where ¢ is an arbitrary constant.

Both of the latter equations are of the form of the
differential equation for the associated Legendre func-
tions provided that c=n(n+1). Accordingly,

M(p)=P:* () and LN =P,*(N)

where, for example,

(20)

(@1)

k 1k
P = (- L)

The general solution of equation (3) may then be
written as

=33 3P Pt () Ay 05 KO-+ By sin 11

This expression, however, has a singularity at infin-
ity and since only the region outside a given surface of
revolution is of interest, the infinite region, or the
neighborhood of A= », must be considered. Therefore
P.*(\) is replaced by the associated Legendre function
of the second kind @Q.*(}), where by definition,

QrN= (e LG
Then
¢1=§_30 gp,t(p) Q* (N[ Ans 08 k6-+Bys sin ko) (22)

If the body of revolution moves with a uniform
velocity V in the direction of the z axis, it may be
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supposed to be at rest and the fluid to have a transla-
tion — V superposed on its actual motion. Then

p=¢1+zV (23)
Consider the body profile in any one of the meridian

planes 0. At any arbitrary point of it the normal
derivative of ¢ is given by
~ P do=g2 a5 as, (24)

Since the normal velocity along the meridian curve is
zero, it follows from equations (23) and (24) that

(7
asp‘ &n)d‘g

Also, z=p cos 0, s0 that

ad"-l-v dsy=0

0s,,

0z dp 0r Op
%—cos 6=— Bo, and e =c08 0 v 68,,

Therofore
a¢l ap ad?] p
( +Vecos 6 —a?)) ds, = 68,,+ Vcos 6 )dsA (25)

In order that the condition of no flow normal to
the body of revolution be yalid for all values of 6,
there must be chosen from among all the solutions
given by equation (22) that one which has cos 6 as a
factor; namely:

¢1=g)1A,uPu‘ (1) Q2 (N\) cos 6

or
d1=2aV cos 6(\2—1)3(1— p’)*EO’.dP @ (26)
du d\
nol
where C,= W
Furthermore

N—pf\i A— 2\
d8a=2a<');§_—‘; ax and d8F=2a<‘1__%2> dp

so that equation (25) becomes

0

™ (1+pV cos 0)_ 1—u? d\
=i

o bitoVeoss) I du

Finally, by means of equation (26) and the differ-
ential equation for the Legendre polynomials the fore-
going boundary condition takes the following form:

Eo[d(m 4Pd0: _

=]

w1 (P,.Q,,] 404 (o7,

DISTRIBUTION OF DOUBLETS
The doublets are assumed to have their axes in the

z direction and to lie along the segment —2a¢=< 2, <2a
of the axis of symmetry z. The velocity potential at

- Then substituting this expression for
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any point (z, p) of some meridian plane § then takes
the form (see reference 6):

s _pcos Bf J(21)dz
U r ) ml(z—2)* 0T
where J(z;) is the intensity of the doublets per unit
length.
Substituting for ¢, from equation (26) it follows that

dP dQ. J(2)dz
V)o@ i ._m[(z—zl) e

n=1
For points lying on the z axis but outside the distri-
bution this equation takes the following simplified
form:

n(n+1) ~ dQ. 1 1 J(2an)d\
VZ Cagy= 167a?), (A—AD? (28)

A=l
. dP,
where z; is replaced by 2a);, z by 2a), and (77;7),_1
by n(rn;- b, This is an integral equation for the un-

known funection J(2a);). In the solution of this inte-
gral equation it is necessary that a development of

—1—,, as a series of Legendre ploynomials in A; be .
(A=)

obtained. The form of this development is suggested
by Neumann’s equation (8). Thus assume that

o= D BP0 @)

n=1

in: Neu-

1
)\_‘Al
mann’s equation and making use of the orthogonality
relations satisfied by the Legendre polynomials, it is
found that

by=2n+1
Therefore

=Y et DM
ne=l
Differentiating this last expression once with regard to
M and once with regard to A, it follows that

1 _2 2n+1dPy(\) d@. ()
—n)? 2 dN da

n=]

Equation (28) then becomes

n=]

2(2 +1) %% f J(zax.)a{—"dx 29)

no=l

Tt is now obvious that the following assumption must
be made:

J2a\) = —8xa? V(1 —\?) c,,,jf

mel
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and substituting this expression in equation (29) it
follows that

0.,

Z (Ci—en) g
o]
In order that this equation be valid for arbitrary val-
ues of ),
en=Cl

and therefore

J(2a)\1) = B giﬂ (30)

n=1
Thus, given the velocity potential ¢,, that is, the
0, ’s, this expression determines the equivalent doublet
distribution.
DETERMINATION OF THE COEFFICIENTS A, AND C.

Any symmetrical profile may be represented by a

power series in p(=cos ). That is
X=Z au’
r=0
The rapidity of convergence of this series depends,
however, on the choice of origin with respect to the
profile. Since A=a, defines an ellipse, the rapidity of
convergence of the foregoing series may be looked upon
as g measure of the resemblance of the profile to the
ellipse A=qa,. The proper choice of origin may be
attained in the following manner. The radius of
curvature R of an ellipse at the end of its major axis
is given by
B2

B1)

where A and B are its semimajor and semiminor axes’
respectively.

Eliminating 5 from equations (1), the following
equation of a system of confocal ellipses results:

22 2 .
(2 cosh T)° } @a siﬁlh Eh 1. (Thedistance between
foci is 4a.)
In terms of elliptic coordinates then
ginh? ¢
RB=2a cosh ¢

Furthermore, for an elongated ellipse the semimajor
axis 2a cosh ¢ is large compared to the semiminor axis
2e¢ sinh . This limitation means that ¢ is small.
Neglecting powers of ¢ higher than the second it
follows that (see reference 7)

R=2a}* (approximately)
The ends of the ellipse are at
) + <2a+ 2)

424 cosh ;=i2a<1+‘“

(approximately)

REPORT NATIONAIL ADVISORY COMMITTEE FOR AERONAUTICS

and therefore the focus of an elongated ellipse very
nearly bisects the line joining the end of the semimajor
axis and the center of curvature. Thus the proper
choice of origin is the point bisecting the line of length
4q extending from the point midway between the lead-
ing edge and the center of curvature of that edge to a
point midway between the trailing edge and the center
of curvature of that edge. Having thus chosen a
reference frame (z, p) in which to present the profile,
the next step is to obtain the series equation (31).
This equation may be obtained with the help of the
following expressions. From equation (1) it can be

found that
)+ >_|

G ED
“_{\/<2a+ D) +%) V(G HE) _,

where —1=u=s1.

A series of corresponding values of A and p are thus
obtained. In order to express M as & polynomial in g
of, say, degree n, it is most convenient to employ the
raethod of least squares for determining the (n--1)
constants a, (reference 8).

(32)

FLOW PARALLEL TO THE AXIS OF SYMMETRY

The boundary condition for this type of flow is given
by equation (15). In that expression functions of the

type %Q)\—" appear and thesa are to be expressed as power

series in Jin
Suppose the meridian profile to be given by the fol-

lowing analytic expression:
)\=ao+#2

n=0

a1, nls” (33)

Then on the profile, %

function of  and can be developed in a Taylor series

may be looked upon as a

in the neighborhood of u=0 or A=a,. That is,
Qs \\(A—ag)? d7Q,
dn P! daopﬂ
=0

artQ, /dr!
where daop?-l <__¢‘ka A=qp

Substituting for A—a, from equation (33), it follows

that
o @ P
v drtl 3
B (S o) 5

Pp=0 g=0

In the following the expansion of S? in powers of g is
to be determined (reference 9, p. 122), » being any
positive integer and where

S=Eal, q}-l.q

g=0
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Thus and, in general, it is permissible to write
St= ) a1 1" ) Q1,0 1° c
q=0 g=0 ) St= i.p u?
or p=0
@ @ where
=SS K it
= rreri Ay p= a1, p—r Qi—1,r 81 a'D,r—l if r=0
ro=Q
Expanding S? with respect to r and writing the terms | Hence
with equal indices of p in columns and adding these
columns, dQ,,__ “p d'HQ ¢
an ay oy daopﬂ Op,q B
=0
Sﬁ—'z#pi a1,z a'l,p—r'—zaﬂ » uw or
p=0
where dQu—E 1 a'p,q—
=0 g=p
Gp= ) Q1,p-r1, ] .. .
e Expanding according to p and writing the terms with
In a similar manner, equal indices of ¢ in columns and adding these columns,
5= g By et 34
p=0 _JT £ p[ ( )
where
Bp= ) Q-1 T2
r=0
where
a'm0=aio
Gp=P @},
— 35
Gp2=D a{Elal.z-l-Zi?'é!—llasz”’?J ®5)
=P @050 ,5+ P (P—1) 08501101 1+ 2 (p— 1)(5" 2) a?5ial,
and so on.
The boundary condition also contains terms of the -t
dPﬂ, . . . P — 1 [27'-’— 1] n—2
typ m (1) is the Legendre polynomial in u () = 2 (— )l(n__zj)[[t)j]# (36)
of degree n and is given by J=0
G even
where the upper limit for 7 is according as 7 is
n—1
5 odd
n—2n—1 dQu

T T
[2n—27—1]

a—z—neas @7

Then, %P—”= z (—1)
(4 yey
n—2 n—l

ZmE(”

[2n—25—1]

n—24-1
(n—2j— 1![2:1“ Z 2

Substituting for

a.nd T ® the expressions given by
equations (34) and (37) into the boundary condition
equation (15),

@Oy

Expanding according to powers of n ard writing the terms with equal indices of j in columns and then adding

these columns,

C] -]

22

=0 n=2ftl

Ax

(— [2n—25—1]
n(n+1)

) (n—%—l)![?ﬂ“"'”'lz E’J‘Tﬂ‘ Fat=0
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Putting n—2j—1-4g=m this becomes

[2j414+2m—2q]
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g‘ga-—ﬂd Q2 1 m—q +(ZU=0

ANARAY m(__ Aspyrym—q
ZZ’Z“( VY o i tm—0 @ totm—o

J=0 g=0 m=g

m—gT2]] ?!
p=0

Expanding with respect to ¢ and writing the terms with equal indices of m in columns and adding these columns,

w

A2j+l+ m—q

[274+14-2m—2q]

Troooy @ aptans o170 (39)

EZ( VG i tm—g @+ tm—9

m=0 g=0 f=0

(m—)![27] p! dag™!

p=0

If this expression is to be valid everywhere on the boundary surface, it must hold for the entire range of u. It

follows that the coefficients of the various powers of u are identically zero.

Finally, the introduction of & and

n by means of the substitutions g=m—£k and p=m—n, respectively, leads to the following expression of the

boundary condition:

22 Am—n,n—t Z( 1) [2j+1+2k]A21+1+k
kl(m—n)! @7+1+k) 29+2+k)[2]]

n=0 k=0
where
_1 lf m=0

Equation (39) represents a set of linear equations
infinite in number and containing an infinite number
of unknowns A,. It provides a formal and rigorous
solution of the problem of potential flow about a
body of revolution, parallel to its axis of symmetry.

In the foregoing equations the only unknowns are
the A,’s. The a,,,’s are related to the coefficients of
the power series of A in p (giving the meridian profile
equation (33)) and are evaluated by means of equa-
tions (35). Finally, the @,’s and their derivatives are
well-defined Legendre functions.

For example, if the meridian profile is an ellipse A=a,,
then equation (39) becomes

[27+2m+1] dQssprim
ml[2]] da,

(__ 1) A AﬁH—l+:ﬂ
- 27 +14m)(@27+2+m)
= —BO“C'LU

For m=1, 2, 3, . . . this is an infinite set of linear
homogeneous equations for the unknowns A4;, A4,
...... and, since the determinant of the coefficients
is different from zero, the only solution is that A,

dn—n+1
daoffi’:‘“=—an (39)
A.-, ....... are zero. Krom the first equation,
i. e., m=0, it is then found that
4 __2aU_ 2aU
7O, 1 2o+l ay
da, 2 %6g—1 ag—1
Hence
o 2aU (1 )\—I—l )
S =S G e
2 ao—l a 2—-1

If A and B are the semimajor and semiminor axes of the
meridian ellipse and e its eccentricity, then

20=Ae, ty=2: 20 (o —1)}=B

so that
L U4 (1) 1og ML
=TT T 1\ s
%¢ BT 1T—¢

This result agrees with the well-known expression for
the velocity potential of a prolate ellipsoid of revolu-
tion (reference 10, p. 132).

FLOW NORMAL TO THE AXIS OF SYMMETRY

" The case of flow normal to the axis of symmetry will now be treated in a manner similar to the case of parallel
flow. The boundary condition is given by equation (27):

d(\p) dP dQ.

20
From equation (33),
d(\p)

—n+ 14 (Paes) =4

T—“o'FE(n-I-Z)amn’*‘

n=0

d(w)
du

(40)
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Referring to equation (38) it follows that

() 4P, dQs_ 2 Lo 2, Ea,,q-,dvﬂ(zg n
EO TT an 2 2 (—l)f[ Q)![Q'j] U2.f+1+m—qp-0 ol d(l::‘ﬁ 4

mm() g:-o =0

. [23+1+2m 2q] Up.g-p @ Qasr1eme
"I"Z(n'l‘?')al.n# +Iz 22(— )j Q)I[Qj] 021‘+1+m—42 :pq.lp da::"j

m=0
or
dOW) dPdQu_ N\ NNV, 20 +142m—2g] 2‘1—;7.0—;’4"“'1@54—1+m—q
,,210 du dp AN mz_o“ ;1_25 VI e T day
O 2.7-I-1-I-2m—-2g] ' Ea,, o @ Qost1ime
2, E(n—m+2)am—m;; no( Df[ —)1127] 02H1+"_q,,=.0 pq-’ dag™ (41)
Analogous to equation (34)
G—Pdp
Qn=21~‘q 72- _;T dd%:
=0 p=0

Hence, in o manner similar to the derivation of equation (38)

@

Zn(n—l— 1)a,£ (PaQ)=
=]
n @itm—q) @itltm—g) . . Sa,,.,-,vamm-q
;m# 1;]:20( 1)4 == [27—1+2m—2q] C’g;.,.,,_qpno ! dag? (42)

Substituting equations (40), (41), and (42) in the boundary condition and equating the coefficients of the various
powers of p equal to zero, the following set of equations is obtained:

Z(—1),,[2g-:]11[aw[ao‘%— @n+1) @n+2) Qw]—zmmoh%]qo for h=0
and (after rearranging as for equation (39))

2 +1+2 grmH m
Z (h.’ (kk_‘;b:;?’ 1,3=k~10k—n 2~ 2( 1\’[ j+ + m]()”"' T+m daqu}rﬁ:F-
=0 n=0 m-=0

(43)
h—n+1
+a020 ° a/h(;; l_'n) ( 1) [2J+if?—]|—2m]0?!-|-1+m—7ao—¥[—d ;;Q-af- T
A+l n
z ; 1 2i—1-+}+2 gt "
7—(h+1)2 ;ll;-bl-_ll—_-iu—; !2( 1)4(23+m) (2.7+ [;}in)[ .7 _l_ m] Y daoh%ﬁ "‘(h_l'l)al,h—l
where h=1,2,3,..... ®,

This set of equations represents a formal and rigorous solution of the problem of potential flow about a body
of revolution with flow normal to the axis of symmetry. The only unknown quantities are the infinite number
of Cy’s. 'The other quantities appearing in the equations are determined as in equations (39).

If the meridian profile is an ellipse A=ay, the a,,»’s are all zero and, from the second expression of equa-
tion (43),

JA2n+2h 411 dQoayryn  @Rn—h—2)! _
2(—1) hi2n] { d;o-'- @nth)! Qh+1+n]0n+1+zz—0

where h=1,2,.... o.
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This expression represents an infinite set of linear
homogenous equations in the unknowns G, C;, . . . ..
and, since the determinant of the coefficients is differ-
ent from zero, it imamediately follows that the only
solution is CG;=C;=0C,=....=0. From the first
expression of equation (43), it follows that

01=_3Q;‘0__
003(7;—'2@(%)
This result could have been easily obtained from the
general expression for the velocity potential given by
equation (26). Thus, assume that

g%—sz cos 0(
From Legendre’s equation
(et~ G = 202 +2Qu(a)
Hence (gsee reference 10, p. 133)
01= Qo —dg
agB—2Qua) Llog &L

In the appendix an apphcataon of the boundary con-
dition (equations (39) and (43)) for axial and trans-
verse flows, respectively, is made to a body of revolu-
tion obtained from a symmetrical Joukowsky profile.

INERTIA COEFFICIENTS OF BODIES OF REVOLUTION

It is of some interest to obtain the coefficients of
inertia for axial and transverse flows and also to com-
pare them with those of an ellipsoid of revolution of
equal fineness ratio (references 11 and 12).

When a body moves in a fluid at rest ai infinity the
total kinetic energy of the fluid is given by

2T=—cf S5 3 9% 45 (44)

where ¢ is the velocity potential of the fluid motion,

g% the normel derivative of ¢ where the positive direc-

tion of the normal to the surface of the body is into the
fluid and the integration is performed over the surface
of the body; o denotes the density of the fluid.

9T=—S8xa?cU f '[(1—@)%—;‘— (M—1)x |

If M is the mass of fluid displaced by the body, then
the coefficient of inerfia %, is the quantity multiplying
MUTP in the expression for 27

If the body is & prolate spheroid A=a, the foregoing
expression for 27" becomes:

4 5 ao Iog a0+1 —1
2T=§7r0'(2a)3U2(¢102—-1) ao+1
B S
at—1 2 ap—1
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dP,d,
1)”(1—#2)"01-‘273'):
If the body moves in the positive direction of the y
axis with constant velocity V, it may be supposed to
be at rest and the fluid to have a translation — V super-
posed on its actual motion. Accordingly

¢=2aV cos 6(N*—1)*(1 —#2)u<01dQ1+ 1)

At the surface of the ellipsoid of revolution gener-
ated by the ellipse A=aq,, the normal velocity of the
fluid must be zero. Therefore

$1=2aV cos 0(\2—

22 [ oae—1 G40 0 o [P0

FLOW PARALLEL TO THE AXIS OF SYMMETRY

Since the velocity potential of this type of flow is
independent of the angular coordinate 4, the following
equation may be written for the element of surface:

dS=2=pds

where ds denotes the element of length along a merid-
ian profile. Hence,

2T= —2ﬂ'6§p¢ ¢ ds

If the body moves in the direction of its axis of sym-
metry with a uniform velocity U the boundary
condition 1is

% gs——v %4,

Also, according to equation (24)

= (1) g
Therefore,

2T= —81&2an1 ¢ [(l—pz) )»g%— (M—1u ldu
In general then

N1 *a*dn] (45)

EA,P.@Q.(»@ (46)

n=l

But 20=Ae, ey=> and 2a(af—1)'=B where 4, B

are the semimajor and semiminor axes, respectively,
and ¢ the eccentricity of the elliptical meridian section.
Therefore
1+e
2_6 log 1—_; —1
1 1 +
W Ze

2T= wAB’crU"—lc MU?
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The coeflicient of inertia for a prolate ellipsoid in
uniform axial motion is then given by

1 1—I—e

k — !
“_ 1 1-+-e

1—=¢ 2e1°gl—e
(See reference 10, p. 144)
Equation (46) is now evaluated for the case of a
body of revolution obtained from the Joukowsky pro-

file ¢=0.15, =0.10. (See appendix.) The volume
of this body is found to be

(47)

Q=%a-(2a)3><0.05342

so that the expression for 27 may be written:

2 8 0.
o = 7(2a)* X0 0031390QU’

g—w(2a)3>(0.05342

or k,=0.0881. (See table I.)

Compare this value of %k, with that of a prolate sphe-
roid whose fineness ratio is the same as for the above-
mentioned body of revolution. The fineness ratio f is
defined as the ratio of the length to the maximum
diameter of the body. The maximum diameter is
obtained from equation (53) by means of the condi-

=0 and the length of the body is given by

I=2a(Msc1+ Nsm—1). By means of these expressionsitis
found that f=4.208. The fineness ratio for an ellipse
is given by

A 1

I=B=~Ji=¢

or e=-=,\/1—-——0 971

where ¢ is the eccentricity of the ellipse.
Substituting this value of ¢ into equation (47), the
following value of %, is obtained,

k,=0.0757

A theorem enunciated by Munk (reference 13) states
that when the disturbance caused by a body moving in
an infinite fluid is replaced by fictitious sinks and
sources, the total mass is the sum of the products
obtained by multiplying the intensity of each source or
sink by the potential of the parallel flow. This
theorem will now be shown to be only a first approxi-
mation and to hold exactly only for ellipsoids of
revolution. Thus from equation (19),

dp
tion - a»

I(a)=27 ) Ax Pa()

n=]
where z;=2a)\,
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The strength per length dz; is then

@

dmac ) Ax P.(N) dN

=]
The velocity potential at (z;, 0) of the parallel flow is
given by

¢=2a' U)q

Hence, according to Munk’s theorem

2T,,,a,=81roa’UEA,. f ‘1 A Pa(h) dy

=l
or

2Tgoml—— W(QG)SO'Ug%

Therefore
4 1!'(2(1:) Al

3TzaU—1)W

where @ is the volume of the body and A is the mass
of the displaced fluid.
The coefficient of inertia for axial flow is therefore

47(2a)® 4,

ke=3=g 2,01

This expression for %, is valid for a prolate ellipsoid
but is not valid for a more general shape.

It is obvious from this expression that Munk’s
theorem applies exactly only to ellipsoids of revolu-
tion since only the coefficient 4, appears.! In order to
provide a numerical comparison between Munk’s
theorem and the exact method, the foregoing equationis
evaluated for the body of revolution whose meridian
curve is the Joukowsky profile ¢,=0.15, =0.10. It
yields a value %,=0.0717 as compared with the more
exact value k,=0.0867 already obtained by means of
the fundamental equation (46).

FLOW NORMAL TO THE AXIS OF SYMMETRY

For flow normal to the axis of symmetry the velocity
potential depends not only on the elliptic coordinates
A, p, but also on the cylindrical coordinate 8. Hence,
the equation for the element of surface dS is

dS=pdfds

and equation (44) becomes

oT=—0f [ pd gi;ds s

2T pie=

If the body moves in the direction of the transverse
axis Ocr with a constant velocity V the boundary
condition is

i) dp
agds——Vcos Band8

1 The above critielsm of Munk’s theorem has been found to be incorrect. (It Is to be noted that the volume of the body contains all of the coefficients 4. Implicitly.)
This theorem may be readlly verified by applylog Green’s second theorem to the space Internal to the shape and enclosing the appropriate distribution of sinks and
sources+y, Then i &= Uz and $s3=3 (where Asd--y=0), Green’s second theorem together with equation (44) immediately ylelds the following expression on Munk’s theorem:

2Tﬂ.u

2 2T+ U (valume of body) = —

_SSS U8 Q=S S S Uy dr
T

T
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Also, in general

0. 4P dC

¢=2a V cos H(\2— C. n dr

Hence

1)} (1—#’)‘

fiex]

2T=(20)*xo V? (1—;})()@-1)( +>\>20"4P 22,

For a prolate spheroid, A=a, and

1 - Gl

¢=2aV cos 6(N2—

where

C,= 7_.‘10__
a“da —ZQl(aD)

Therefore

ay Qyy 11
a2 —1 log —1
ay, G+l ad
3logao——_ 1tae—1 —2

%wAB*aV’:kTMV’

2T=

or

1 1—¢ 1+4e

& 2 log —e
1 1— e’ 1-I-e
e’+ 20" —e

ICT'-:-

(49)

(See reference 10, p. 145.)

For the body of revolution whose meridian curve is
the Joukowsky profile =0.15, £=0.10 (see appendix)
it is seen from equetion (48) that

xo V3 (2a)? < 0.059587
% #(20)*0.05342

2T= Q=0.8366 XM V*

Therefore kr=0.8366. (See table I1.)

According to equation (49) for the prolate ellipsoid
of equal fineness ratio f=4.208 and £r=0.8689.

According to Munk’s theorem the inertia coefficient
kr of transverse flow may be obtained from the doublet
distribution along the axis of symmetry. Again, asin
the case of axial flow, this theorem is a first approxima-
tion and holds exactly only for ellipsoids of revolution
since an expression for %y is obtained that contains
only the coefficient C;. Thus from equation (30) it
follows that

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

From equation (45), it follows that

O Go=—8a2(1— )i (M= 1% (uidh-+ M)

(48)
J(zl)=—8m7V(1—>\1’)Z 0,.%%
=]
Then according to Munk
0T iV f 11 J@an)2ad),
or
2T,,,,,,,-——16wa"aV’20 f a— }\1’) dP dP ! dxl

n=l
smce

dP, 1

N
Hence

2T 1ytar=— %w@a)sV’Cl

and

S x(20)'C+Q
or

%w(Za)301+Q
br=—

In order to give a numerical comparison between
Munk’s theorem and the exact method, the fore-
going equation is evaluated for the body of revolution
whose meridian curve is the symmetrical Joukowsky
profile ==0.15, =0.10. It yields 2 value k»=0.8210
as compared Wlt.h the more exact value £7=0.8366
obtained from the fundamental equation (48).

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LianerLey Fiewp, Va., November 12, 1934.



APPENDIX

APPLICATION OF THE ANALYSIS TO SURFACES OF
REVOLUTION OBTAINED FROM SYMMETRICAL JOU-
KOWSKY PROFILES

By means of the mapping function

a?
I
the circle %, of radius ¢ in the ¢’ plane is transformed
into the line segment (—2q, 0; 2a, 0) in the ¢ plane
and the cirele %, of radius (1+¢-+ea)a with cenfer at
(& e, 0) is transformed into a symmetrical Joukowsky
profile J in the ¢ plane. (See fig. 2.)

§=¢’ (50)

P § plong £ $ plane

\ /——\

¢k

A\ ote 73 7 2a0) %
6a 1€a -2a, 0

FiGure 2.—MAfapping of a circle into a symmetrical Joukowsaky proflle.

If in the {’ plane PQ=aef, PO=qaet, angle POQ=1,
and angle PQz'=¢ then, according to the law of
cosines,

E6—i=14-25 cos ¢1-8* 61
-8
where §=7 ToTe
Again, by the law of sines
tan n=g—_T_1—n03§-$ (52)

Putting ¢’ =aet* into equation (48),
£=2a cosh (¢+19)

or z=2a cosh £ cos 5, p=2q sinh £ sin 7
The latter two equations are, in fact, the equations of

transformation from the rectangular coordinates (z, p)
to the elliptic coordinates (¢, #). Since (z, p) refer to
points of the Joukowsky profile .J, using equations (51)
and (52), the following parametric equations of the
system of symmetrical Joukowsky profiles may be
obtained

)\_61(1 +26v+5")”+ E)
= 2 2e(1+ 20 Fo0)%
o+ (53)

Fa T roa%

where A=cosh £, p=cos 7, and v=cos ¢ (the inde-
pendent parameter). '

From these equations A can be expressed as a power
series In p by means of a Maclaurin’s expansion in the
neighborhood of p=0 (. e. y=—3). Thus,!

A=alter gt ) 69

where

(1= +8 e P(1—5)—F B
Ses(I—% “=F1—a 15 od Y= =gt

FLOW PARALLEL TO THE AXIS OF SYMMETRY

Equation (39) is a set of linear equations for the
infinite number of unknown coefficients A4, and pro-
vides a solution of the problem of axial potential flow
about a body of revolution. In practice it is necessary
to evaluate only the first few coefficients A,. From
equation (39), neglecting the A,’s after Aj, the follow-
ing equations are obtained:

1 This power serles suggests the form

A=agleey+V IFD

In fact, if the expression for u from equation (53) is herein substituted the equation
for \ is obtained.
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— SdQl

dQs dQs
EA1+2_d_a;A"_— =16alU

8amﬁQA1+8E

8 <2aq,l%i% + a4 dsQ‘>A1+16am‘5%Ag+2 (10@ —2a;

Qs

—(28E0—2a,11

8(6algd2Q1+6amaudan+a,m del>A1+24(2au + a; ¢t dao3>A2
—a19 d4Q3:|A3

>A., 3+ |:6 (a1,2—14aq,o) dag? + 6(11,0411,1 dai® +al R

ﬁ
42 [6 (5a1,o—'(11,2) —6a,,0a;, 1 P

+6 (14 ——=—06a,, (22(24—301,0

d*Qh &6

8 24(1,1

3
+32<6a1,2%2& +601,0¢11,1%+01,03%%4 A,
+2[24(504 —ay3) Q3+12(5a 2—2a Q’—12 —
1 1,3 T’z‘ 1,0 1,001,8— 0'112)3— aualo'aal al,o

+ 24[2(704.0_3a1.2)'d%—601.001.1m —al,oaw A,

+|:504d

The coefficients of the unknown .4,’s can be calcu-
lated simply by a knowledge of power-series develop-
ment of Nin u (. e., the quantities ag, a1, @13, . - - 8T8
obtained from equation (33)). The zonal harmonics
Q. (a,) are given by means of the recursion formula:

(n+1) Quy1(a0) — @n+41)a0Qn (a0) +1Qu-1(a0) =0

Betr 4 90 _ (14 09 9% 1 Qu(an)+3Q, @) +50u(@) + -

where it is necessary to determine g—% independently.

In order to calculate the higher derivatives the pre-
ceding recursion formula may be repeatedly differen-
tiated with regard to @,. The higher derivatives of
Qo and @, are obtained independently by means of the
(r—1)th derivative of Legendre’s differential equation:

(0—1) e 4210, T — ) ar 1) TG =0

If the constants ag, @11, @12, - - . &nd the various
derivatives of @, are known, the coefficients of the
unknowns .4; in equation (54) are easily calculated.
The resulting system of linear equations can then be
solved for the A4,’s which in turn determine the poten-

—20,,0% 4,65 4t T A0

=0

4
Jm'l‘ 12(2(1'1.004,2+01.12)m+ 12@1.1%,0’%4‘“1,0“@} 4,

—24(14a11—015) 5 5 déQ‘,g +12(2a100 2+ 01 14”’“’2)3% +1201.0:4 dQ&_l-al 0 dQleAs—
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1%—010 da.f)Aa 12@103&#14

(65)

2

d‘Qs

In the application of this recursion formula it is neces-
sary to calculate Qy(ay) and @ (ae) independently where

Qu(ao) =3 log 282 and Qu(a0) =auQu(en) 1

The first derivatives %%‘ are then obtained from the
following relation:

.+ @2n+1)Qnlar)

tial function ¢ given by equation (10). A knowledge
of the potential function yields directly the velocity u
given by equation (16). Finally, according to Ber-
noulli’s equation, the pressure p on the surface is
given by

»+ %W’!:Po'l‘ %PU?
or

(7,,="D ;;p“ =1 _<Tu]>2 where p = % U
The numerical work is straightforward but somewhat
tedious owing largely to a lack of tables of the zonal
harmonics of the second kind.

As an illustration of the procedure here outlined,
consider the body of revolution whose meridian curve is
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the Joukowsky profile (reference 14) defined by ¢,=0.15
and =0.10. (See fig. 2.) From equation (53) there
can be written then for the power-series development
of A:

A=1.02340--0.02630p-}0.0074764*

203

Here

ao=1.02340, a10,=0.0263, a,,=0.007476,
a19=0, a15=—0.0000273, . . . .

The zonal harmonics of the second kind and their
derivatives are given by table IIT.

—0.000027344+ . . ., (56) Substituting these numerical values into equations
(65) the following set of five linear equations is ob-
o very rapidly convergent series. tained for 4,, A;, As, 4y, and A4y
19.385 4, — 3.780 A4; +1.400 Ag=2aU

10.372 A,— 7.635 A,— 2.342 A+ 4.333 A+ Ay=0
— 1.152 A+ 1.294 A;— 0.810 A;— 0.850 A+ A;=0 67

— 0.500 4,4+ 0.685 4;— 0.763 4;+ 0.300 4,4+ A;=0

—27.957 A,4+39.785 A;—57.432 A;-163.549 A+ A;=0

The solution is given by 2

A;=0.0573X2aU, A3=0.0726 X2aU, 4,=0.0296 X2aU, A4,=0.0065X2aU, A;=0.0015X2aU
The sink-source distribution obtained from equation (19) is:

I(2aX)=4xalU(—0.0339-40.0157;+40.0846\,>+40.0606 34 0.0283,4-}-0.01197%

Figure 3 shows a graph of this function with
I(2a\)/47waU as ordinate and ); as abscissa.

[Doub/e 7
. z
Sink 'SOUU Za

Fi1GurE 3.—Bink-source and doublet distributions.

In order to obtain the pressure distribution, the
following expressions can be evaluated at a sufficient
number of points of the boundary:

(58)

d¢ : d
'a—)\=zAuEQYaPa(F)

n=]

5

0 dpP,

a—#—ZA,Qa(k) 5
and then substituted into equation (16) for »? where «
is now the velocity at the surface of the body with the
body considered to be at rest with regard to the fluid.
The velocity u is calculated by means of the following
expression:

5 3 5
w\'_ 1 1 dQ, 1 dP,
(%) —m{w—l)(éwthﬁ R.@)ﬂ) +0— <2aUEABQ,(x) o +x>’] (59)
. n=ml Nn=]
Note here that the velocity potential
$=2aT710.0573 Py(1) Qi () +0.0726 Pa(1)Qe(i)+ . . . +0.0015 Py(u)Qs(1)]
is exact for the body of revolution obtained by super- LOr
posing a uniform velocity U on the flow from the sink- ’
source distribution given by equation (58). This body "
is a very good approximation to the actual body a[s.s
obtained by revolving the Joukowsky profile about ,i
the axis of symmetry, so that in calculating the pres- T; z
sure distribution it is permissible to use the (A, u) Co \\\—/ 2a
values as given by equation (55). -
Table IV shows the sequence of operations to be fol- -5k
lowed in obtaining the pressure distribution and figure T LlORE 4—Theoretical . distribution (aclal fiow).
4 presents graphically the pressure distribution.
! In jts exact form the system contains an infinite number of equations with an infinite number of unknowns A, As, . . . . For practical purposes, however, the

following method of solation Is suggested. Supposs the system of equations to have been solved to an arbitrary degree of approximation, say thres. Then to this solu-
tion there corresponds a definite sink-source (or doublet, as the case may be) distributlon from which can be obtained the corresponding profile and hence a o, n)
curve. This (A, x) curve can then be compared to the (A, s) curve of the actual profile. In order to improve the approximation, the trus (\, u) curve can be shifted
in such a manner that a repetition of the process of solution, to the same degreo of approximation, ylelds 8 new system of (A, x) values closer to the actual set of &, 5
values than the first approximation. In this manner the process can be carried on until the desired degres of accuracy Is obtained.
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FLOW NORMAL TO THE AXIS OF SYMMETRY A1101+A1202+A1303+A1‘04—I—A1505=ao
From equations (43), for the first five coefficients APCHAECHAPCHALCH ALCr=1 ay, 13 (60)
Gy, Cy, Cs, G, C; the following set of linear equations | where i=2, 3, 4, 5
can be obtained: and

A11=%%%—2Q1

A12=30«1.0%

13=—3(%a0dQ3—6Q3>
A= —'1—5 a, O%‘Q‘:

ar=f(Gonge—150:)

—Gl.o(do d2Q1—2§%

Af=3 ‘11.02 m + (ao+2ar.1) %%— 6Q2:|
A23=_3a,1 0 aod2Q3 11(19‘3>

(G-
R P ‘ja?;+(ao+2al )G —200.]
A31=@ %;%Haoax.l—al.o’) g%—?»wl.l ‘i%

A7—3 ‘ﬂfa%ﬂ,.o(?,alﬁao)%Hsal.a—mw) =

Af=—3 aoal ¢ + (@ea1,1—16a,, o’) ZaT (5ao+33a1 1) -gé+30Qa]
Agt=— 15 a12° %‘4“1’1.0(3@1.1"‘%) m‘l‘ (8ay,2—28ay,0) dT::l
A35=1§|:“°—“?j& Pt (aats —4300,) T~ (14ar-8701) ‘i%+ 4200, |

3 A4
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Again, substituting the numerical values given by equation (53) and table III into the foregoing expres-

sions, there result the following equations:

—22.402 C,— 1.363 C;+ 34.018 G+ 2.578 C,— 39.602 (;=1.02340

25.036 C,—

67.392 C;— 45.658 C;+163.240 C,+ 66.762 C3=0.05260
—20.665 C,+78.034 C,—132.860 C;—

221.940 C,+4-497.330 C;=0.02243 (61)

—15.235 C,+64.050 C,—178.260 C3-+-202.310 C,+391.330 Cs=0
10.437 C;—46.495 C;-+150.380 C5—361.150 C,+197.350 C;=0.00014

The solution is given by

Ci=—0.0486
C,=—0.0178
=—0.0027

J(2aN)=87a*V(1—\?)(0.0447+40.05127,-+0.01871,*4-0.004973-0.00227*)

The graph of this function with J/87a?V as ordinate
and A, as abscissa is shown in figure 3.

DETERMINATION OF THE TRANSVERSE-FORCE DISTRIBUTION

When the axial flow is combined with the transverse
flow some information regarding the distribution of
forces over the surface of the body can be obtained by
introducing the notion of the transverse-force coeffi-
cient., For the pressure difference at the surfacs,
according to Bernoulli’s equation:

P—P=g(P+V—~¢)

where.p, is the pressure at an infinite distance from
the body and ¢ is the velocity of the fluid at the

=—0.00028
Cs=—0.00005

The doublet distribution function J(2a);) then be-
comes:

(62)
surface, supposing the body to be at rest and the
fluid to strike it at an angle « where tan a=g-

. Now ¢ has three components—in the directions ds,,
ds,, and pdf. They may be denoted by ¢, g, and gs,
respectively. Also denote by u, and u, the velocity
components of the axial flow and by t,, z,. the velocity
components of the transverse flow taken in the plane
6=0. Then,

@=uUr-}v» cos 0
¢n=Us+1, cOS 8
Jo—="Ds sin 0

Introducing these values into Bernoulli’s equation,

—po=%—[U’+ V22— —u,2—0)2 cos® 6—u,2 cos® §—vg® sin? 6—2 (uamn+up,) cos 0]
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1t is only the term
o(uantup,) cos 6=a(ad) cos §

that need be considered, for the other terms have equal
values for 8 and =0 and accordingly vanish when
integrated over the entire cross section. The resulting
transverse force, relative to an annular element of
width unity, is therefore

%:' J:(;zz‘;) cos® 0 pdi=owp (GD)
i N=1)a—p
%az sin 2a N—p? [(ETP &

—(E%%Q,(X)+k>
fim] n=1

Tables IV and V give the numerical data for the
evaluation of the right-hand side of equation (61) and
figure 5 represents graphically these numerical results

15T
J v
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b>] 1 o U
g
& 05
£ L
x
o Za
-5

Fi1gURE 5.—Transverse-force distribution.

qth B
with Sar s oa &S ordinate and ( Au) as abscissa.

According to theory the posﬂuve and negative areas
included by the 8 curve and the z axis are equal; that
is, there is no resultant lift force but only a simple
couple.
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